
 1

Machine Learning for Source Code
Classification

Dr Timothy Chappell
Queensland University of Technology

 2

Classification

● Classification is the task of assigning classes to
items based on the features that characterise
those items

● One famous example in machine learning is the
Iris data set, for classifying Iris plants according
to the physical features of the individual
specimens

 3

Iris plant data set

Sepal length (cm) Sepal width (cm) Petal length (cm) Petal width (cm) Class

5.1 3.5 1.4 0.2 Iris-setosa

4.9 3 1.4 0.2 Iris-setosa

4.7 3.2 1.3 0.2 Iris-setosa

4.6 3.1 1.5 0.2 Iris-setosa

7 3.2 4.7 1.4 Iris-versicolor

6.4 3.2 4.5 1.5 Iris-versicolor

6.9 3.1 4.9 1.5 Iris-versicolor

5.5 2.3 4 1.3 Iris-versicolor

6.3 3.3 6 2.5 Iris-virginica

5.8 2.7 5.1 1.9 Iris-virginica

7.1 3 5.9 2.1 Iris-virginica

6.3 2.9 5.6 1.8 Iris-virginica

(150 total instances, 50 belonging to each class)

 4

Iris plant data set

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iris-setosa
Iris-versicolor
Iris-virginica

S
e

p
al

 w
id

th
 (

cm
)

Sepal length (cm)

 5

Iris plant data set

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

 6

Possible classification rules

● If petal_width < 0.8
● Iris-setosa (100% certainty)

● If petal_width >= 0.8
● If petal_length < 4.95

● Iris-versicolor (94% certainty)
● If petal_length >= 4.95

● Iris-virginica (96% certainty)

 7

Iris data set with classification rules

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

petal_width < 0.8

petal_length < 4.95 petal_length >= 4.95

 8

Pitfalls when designing classification
rules

● Classification rules should not be fit too tightly
around the training data

● The purpose of classification rules is to classify
new instances where the class is not known
and overfitting the classification rules can
reduce the accuracy of classification in the long
run

 9

Machine learning

● When there are few features and when the
relationship between features and classes is
simple, classification rules can often be created
manually

● In more complex cases, machine learning can
be used to infer classification rules from the
training data

 10

Decision trees

● One of the simplest algorithms for learning
classification rules

● Generates a human-readable classifier model
in the form of a tree of if/else tests

● Recursive implementation:
– A rule is created by choosing a feature and a

threshold that best partition the data set

– This creates two subsets, which are recursively
partitioned in the same way

 11

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Example decision tree construction

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

 12

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Example decision tree construction

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

petal_width <= 0.6

 13

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petal_width <= 0.6

petal_width > 0.6

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6: Iris-versicolor (50/100)

 14

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petal_width <= 0.6

petal_width > 0.6

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6: Iris-versicolor (50/100)

petal_width <= 1.7

 15

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petal_width <= 1.7

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
| petalwidth <= 1.7: Iris-versicolor (49/54)
| petalwidth > 1.7: Iris-virginica (45/46)

petal_width > 1.7

 16

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petal_width <= 1.7

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
| petalwidth <= 1.7: Iris-versicolor (49/54)
| petalwidth > 1.7: Iris-virginica (45/46)

petal_width > 1.7

petal_length <= 4.9

 17

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petal_length <= 4.9

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
| petalwidth <= 1.7
| | petallength <= 4.9: Iris-versicolor (47/48)
| | petallength > 4.9: Iris-virginica (4/6)
| petalwidth > 1.7: Iris-virginica (45/46)

petal_length > 4.9

 18

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petal_length <= 4.9

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
| petalwidth <= 1.7
| | petallength <= 4.9: Iris-versicolor (47/48)
| | petallength > 4.9: Iris-virginica (4/6)
| petalwidth > 1.7: Iris-virginica (45/46)

petal_length > 4.9

petal_width <= 1.5

 19

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
| petalwidth <= 1.7
| | petallength <= 4.9: Iris-versicolor (47/48)
| | petallength > 4.9
| | | petalwidth <= 1.5: Iris-virginica (3/3)
| | | petalwidth > 1.5: Iris-versicolor (2/3)
| petalwidth > 1.7: Iris-virginica (45/46)

petal_width <= 1.5

petal_width > 1.5

 20

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
| petalwidth <= 1.7
| | petallength <= 4.9: Iris-versicolor (47/48)
| | petallength > 4.9
| | | petalwidth <= 1.5: Iris-virginica (3/3)
| | | petalwidth > 1.5: Iris-versicolor (2/3)
| petalwidth > 1.7: Iris-virginica (45/46)

147/150 instances
correctly classified

 21

Decision trees

● Providing each instance can be uniquely
identified by its features, the recursive
construction of the decision tree can be run
until all the classes are perfectly separated

● However, most algorithms stop earlier when
certain criteria are met to avoid overfitting

● The leaves of the tree carry both a prediction
and a confidence score, but the confidence
score is only useful when the tree cuts off early
enough to avoid overfitting

 22

Evaluation

● Once you have created a classifier model, you
want to know how well it will fare on future data

● Unfortunately, as you don't have this future data
yet you can't use it to evaluate your classifier

● The classifier's accuracy on the training data is
not a good indicator of how well the classifier
will work on future data, as the model may
overfit the training data

● Standard approach is to hold back some data
for evaluation and not use it in training

 23

Cross-validation

● The quality of the classifier depends on the
amount of data used to train it

● As a result, when the amount of training data
available is small, holding parts of it back for
testing can be undesirable

● One solution to this is n-fold cross-validation
● The training data is randomly divided into n

groups and each group is independently tested
using the remaining groups as training data

 24

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3-fold cross-validation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

● For 3-fold cross-validation, you take your
training data...

 25

3-fold cross-validation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

● ...and divide it into three subsets.

● The subdivision is commonly stratified,
meaning each subset has approximately equal
numbers of each class

 26

3-fold cross-validation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

The subset pairs are combined to create training
data for the remaining subset

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

 27

3-fold cross-validation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

● Classification models are trained on each
training set...

 28

3-fold cross-validation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

● ...and then applied on their respective test sets
to produce an evaluation

● Every instance has now been classified, and
the accuracy of the algorithm on this data set
can be reasonably expected to apply to unseen
data, providing the training set sufficiently
represents the unseen data

 29

Machine learning for source code
classification

● Primary data set used for training and testing is
the 'begbunch' accuracy test suites, used for
testing Parfait

● After some files were removed, either for data
quality reasons or because they couldn't be
compiled, the data set consists of 5434
functions across 3627 C and C++ source files

 30

Machine learning for source code
classification

● The data set consists of source files that have
been marked up with tags identifying bugs and
potential vulnerabilities:

int main(int argc, char *argv[])
{
 int inc_value;
 int loop_counter;
 char buf[10];

 inc_value = 4105 - (4105 - 1);

 for(loop_counter = 0; ; loop_counter += inc_value)
 {
 if (loop_counter > 4105) break;
/* <bug buffer-overflow> */ buf[loop_counter] = 'A'/* </bug> */;
 }

 return 0;
}

 31

Machine learning for source code
classification

● The problem is treated as a classification task
with each bug type considered to be an
independent class variable

● Example bug types:
– buffer-overflow

– double-free

– memory-leak

– race-condition

– read-outside-array-bounds

 32

Machine learning for source code
classification

● Classification is performed at the function level:
– A single source line is not likely to have enough

information in it to meaningfully identify whether it
has a bug or not

– An entire source file may be too coarse for
classifications to be meaningful

● The class labels (bug types) are provided, but
the features are not necessarily obvious
– Unlike problems where you have an existing data

set, like the Iris plants set

 33

Features for classifying source code

● There are two main kinds of features that we
hope to find:
– Features that indicate the presence of or absence

of a particular kind of bug
● Risky programming styles that happen to correlate

strongly with certain bugs or vulnerabilities

– Features that allow us to find duplicates or near-
duplicates of functions or blocks of code

● The logic here is that code gets copied around a lot and
this can cause certain bugs or vulnerabilities to propagate

 34

Features for classifying source code

● Outputs from the Parfait “Complexity” tool:
● Cyclomatic
● Dataflow
● DefUseChains
● Edges
● Effort
● FuncEndLine
● FuncStartLine
● Knots
● Length
● Level
● LineCount
● Nesting
● Operators
● Vertices
● Vocabulary
● Volume

 35

Features for classifying source code

● Text features:
● !
● (
●)
● ,
● 00
● 1
● 10
● 101
● 1024
● 12
● 1900
● 2
● 20
● 25
● 320x200
● 4G
● 55
● 553
● 8000
● ==
● APLOG_ERR
● APMG_CLK_REG_VAL_BSM_CLK_RQT
● BAD
● CV_CHARPTR
● CV_FLOAT

● CV_INT
● Con_DrawRuler2
● Con_GetAlias
● Con_GetByte
● Con_GetCommand
● Con_GetFloat
● Con_GetVariable
● DDKEY_ENTER
● DEFAULT
● DEFAULT_LOG_FORMAT
● DHparams_dup
● DIAGstr
● EVP_PKEY_EC
● EXITCODE_OK
● Expired
● FILE
● FONT
● FSM_COMPATIBILITY
● FSM_IDADD
● FSM_IDDEL
● FSM_MACRO
● HITN
● HSP_TYPE_LOCAL
● IEEE80211_CHAN_ANYC
● ImageWidthsOrHeightsDiffer

● In
● Input
● Logged
● MagickEpsilon
● MagickExport
● Mel
● Only
● PATH_SEP
● PKCS7_TEXT
● PlayMusic
● REPLY_LEDS_CMD
● RESERVED
● RXON_FILTER_ACCEPT_GRP_MSK
● RX_QUEUE_SIZE
● Record
● Rectify
● SCD_DRAM_BASE_ADDR
● SCD_INTERRUPT_MASK
● SCD_QUEUE_RDPTR
● SDSSC_OKAY
● SGE_INTR_MAXBUCKETS
● SGE_PL_INTR_MASK
● SGE_RX_COPY_THRESHOLD
● SLC_IP
● SSL3_MT_CERTIFICATE_VERIFY

...etc...

 36

Features for classifying source code

● LLVM disassembly instruction frequencies:
● add
● alloca
● and
● ashr
● bitcast
● br
● call
● extractvalue
● fadd
● fcmp
● fdiv
● fmul
● fpext
● fptosi
● fptoui
● fptrunc
● fsub
● getelementptr
● icmp
● insertvalue
● inttoptr
● invoke
● landingpad
● load

● lshr
● mul
● or
● phi
● ptrtoint
● resume
● ret
● sdiv
● select
● sext
● shl
● sitofp
● srem
● store
● sub
● switch
● trunc
● udiv
● uitofp
● unreachable
● urem
● xor
● zext

 37

Features for classifying source code

● LLVM disassembly instruction n-grams:
define i32 @main(i32 %argc, i8** %argv)
nounwind {
entry:
 %retval = alloca i32, align 4
 %argc.addr = alloca i32, align 4
 %argv.addr = alloca i8**, align 4
 %inc_value = alloca i32, align 4
 %loop_counter = alloca i32, align 4
 %buf = alloca [10 x i8], align 1
 store i32 0, i32* %retval
 store i32 %argc, i32* %argc.addr, align 4
 store i8** %argv, i8*** %argv.addr, align 4
 store i32 1, i32* %inc_value, align 4
 store i32 0, i32* %loop_counter, align 4
 br label %for.cond

for.cond:
 ; preds = %for.inc, %entry
 %0 = load i32* %loop_counter, align 4
 %cmp = icmp sgt i32 %0, 4105
 br i1 %cmp, label %if.then, label %if.end

if.then:
 ; preds = %for.cond
 br label %for.end
...

alloca-alloca
alloca-alloca
alloca-alloca
alloca-alloca
alloca-alloca
alloca-store
store-store
store-store
store-store
store-store
store-br

br-load

load-icmp
icmp-br

br-br

● add-add
● add-and
● add-br
● add-call
● add-getelementptr
● add-icmp
● add-invoke
● add-load
● add-lshr
● add-mul
● add-sdiv
● add-sext
● add-shl
● add-sitofp
● add-srem
● add-store
● add-sub
● add-switch
● add-trunc
● add-udiv
● add-urem
● add-zext
● alloca-alloca
● alloca-br
● alloca-call

...etc...

 38

Features for classifying source code

● Clang –analyze output
● Array-subscript-is-undefined
● Assigned-value-is-garbage-or-undefined
● Bad-free
● Branch-condition-evaluates-to-a-garbage-value
● Dead-assignment
● Dead-increment
● Dead-initialization
● Dereference-of-null-pointer
● Dereference-of-undefined-pointer-value
● Double-free
● Function-call-argument-is-an-uninitialized-value
● Garbage-return-value
● Memory-leak
● Out-of-bound-array-access
● Potential-buffer-overflow-in-call-to-'gets'
● Result-of-operation-is-garbage-or-undefined
● Return-value-is-not-checked-in-call-to-'seteuid'
● Undefined-allocation-of-0-bytes-(CERT-MEM04-C;-CWE-131)
● Use-after-free

 39

Features for classifying source code

● Output from other static analysis engines:
– Parfait

– Splint

– Uno

 40

Feature selection

● When there are a very large number of
features, machine learning algorithms can take
a long time to generate models and can
perform suboptimally

● This can be solved through manual feature
engineerin, but it is also possible to use
machine learning to reduce the subset of
features

 41

Feature selection

● For example, after mining the data set for text
features, 8190 unique text features were
identified

● This was reduced to a more manageable 500
through dimensionality reduction using the
leave-one-out-nearest-neighbour-error
(LOONNE) algorithm

 42

LOONNE

● Leave-one-out-nearest-neighbour-error
calculates a global error value for a particular
data set by finding each instance's nearest
neighbour in a Euclidean space formed out of
the data set's features

● The differences between the class of each point
and its nearest neighbour are then summed to
produce this global error

 43

LOONNE

● Each dimension is then experimentally
removed and the global error of each new
subspace is calculated

● Finally, the subspace with the lowest global
error becomes the new feature space

● This process then repeats until all features
have been removed

● The result is a ranked list of features in order of
representational capacity

 44

LOONNE

● This approach involves backward subspace
selection rather than forward subspace
selection to preserve groups of features that
have greater combined representational
capacity than they have individually

● Forward subspace selection would incorrectly
omit these groups

 45

LOONNE

010002000300040005000600070008000
0

500

1000

1500

2000

2500

3000

Dimensionality

E
rr

o
r

 46

Artificial data vs real data

● Some benchmarks were comprised of real
data, others of artificial data designed to test for
specific bugs:
– Cigital (artificial) 50 functions
– Iowa (artificial) 1686 functions
– Parfait (real) 547 functions
– Parfait-2 (real) 417 functions
– Parfait-examples (artificial) 25 functions
– Samate (artificial) 2366 functions
– unportable (real) 162 functions
– Memory-leak (artificial) 181 functions

 47

Artificial data vs real data

● While classification with the features identified
was found to be very effective on the artificial
data, in many cases it achieved this
effectiveness by selecting for features that only
correlated with bugs in the same artificial data

● However, artificial data could not be excluded
entirely as the majority of the available data
was artificial and many categories of bugs were
only represented well in the artificial data sets

 48

Artificial data vs real data

● The compromise used here was to perform
cross-validation on the individual bug-testing
suites:
– e.g. when testing on the 'Cigital' suite, the data from

the other suites would be used for training

● This ensured that maximum utility was
extracted from the data without using the
artificial data to “cheat”.

● The 'memory-leak' suite was removed as it was
found to contain source files also used in other
testing suites

 49

Comparisons

● Bug types no systems scored any correct
results on were omitted (they are included in
the total, however)

● FP = false positives

 Biscotti Parfait Splint

buffer-overflow 1054/1305 (81%), 20 FP 1073/1305 (82%), 21 FP 821/1305 (63%), 356 FP
double-free 0/23 (0%), 0 FP 16/23 (70%), 3 FP 0/23 (0%), 0 FP
format-string 0/17 (0%), 0 FP 0/17 (0%), 0 FP 4/17 (24%), 17 FP
integer-overflow 0/24 (0%), 0 FP 1/24 (4%), 9 FP 0/24 (0%), 0 FP
memory-leak 29/189 (15%), 3 FP 54/189 (29%), 24 FP 0/189 (0%), 0 FP
null-pointer-deref 0/14 (0%), 0 FP 8/14 (57%), 3 FP 5/14 (36%), 69 FP
read-outside-array-bounds 176/267 (66%), 5 FP 179/267 (67%), 4 FP 232/267 (87%), 890 FP
uninitialised-var 37/125 (30%), 5 FP 81/125 (65%), 83 FP 79/125 (63%), 134 FP
use-after-free 0/31 (0%), 0 FP 17/31 (55%), 3 FP 18/31 (58%), 7 FP

total 1296/2233 (58%), 37 FP 1429/2233 (64%), 150 FP 1159/2233 (52%), 1473 FP

 50

Biscotti

● Performance can be tuned to achieve greater
accuracy with more false positives or fewer
false positives at the cost of lower accuracy

● Presented results balance accuracy and false
positives by maximising the score:
– score = correct results – false positives

● Can be used as a 'filter' for more expensive
static analysis, like Parfait, by omitting Parfait
and other time-consuming features, then tuning
the results to maximise accuracy

 51

Top 10 features

● [Parfait]buffer-overflow

● [Parfait]read-outside-array-bounds

● [Splint]xx-fresh-storage-not-released-before-return

● [Text],

● [Complexity]FuncEndLine

● [Parfait]uninitialised-var

● [Splint]xx-function-exported-but-not-used-outside

● [Splint]xx-for-body-not-block

● [Splint]xx-return-value-ignored

● [Text]contents

 52

Algorithms used by Biscotti

● LOONNE
– Used to reduce the dimensionality of the feature

space before passing the results to the next
algorithm

● RandomForests
– Ensemble classifier consisting of 100 randomly-

seeded decision trees using different random
subsets of the feature set

– The outcomes of the decision trees are then
combined to produce a single outcome for each
result

 53

Biscotti architecture

● Developed as a series of individual programs
and scripts that interact through shared file
formats

● Can be used standalone or in conjunction with
Weka and other machine learning tools, with
supplied conversion tools to arff and C5 formats

 54

FunctionList format

● FunctionID:SourceFile:FunctionName:FirstLine:LastLine
0:Samate/Krat-basic-00227-large/src/basic-00227-large.c:main:74:90
1:Samate/Samate-memory_leak_basic1/src/memory_leak_basic.cpp:_Z4funcv:34:35
2:Samate/Samate-memory_leak_basic1/src/memory_leak_basic.cpp:main:39:44
3:Samate/Krat-basic-00017-med/src/basic-00017-med.c:main:74:83
4:Samate/Samate-Using_freed_memory/src/Using_freed_memory.c:main:21:35
5:Iowa/Iowa-C99-c_K_3_2_b/src/../../shared/TEST_PARAM.H:ret:9:24
6:Iowa/Iowa-C99-c_K_3_2_b/src/c_K_3_2_b_s.c:func:34:46
7:Iowa/Iowa-C99-c_K_3_2_b/src/c_K_3_2_b.c:main:45:51
8:Samate/Samate-resource_injection_basic_good/src/resource_injection_basic_good.c:allowed:41:49
9:Samate/Samate-
resource_injection_basic_good/src/resource_injection_basic_good.c:printLine:52:64
10:Samate/Samate-resource_injection_basic_good/src/resource_injection_basic_good.c:main:66:74
11:Memory-leak/Iowa/Iowa-Alloc-c_G_1_3_a/src/../../shared/TEST_PARAM.H:ret:9:24
12:Memory-leak/Iowa/Iowa-Alloc-c_G_1_3_a/src/c_G_1_3_a_s.c:func:34:51
13:Memory-leak/Iowa/Iowa-Alloc-c_G_1_3_a/src/c_G_1_3_a.c:main:35:38
14:Iowa/Iowa-Pointer-c_F_1_8_e/src/../../shared/TEST_PARAM.H:ret:9:24
15:Iowa/Iowa-Pointer-c_F_1_8_e/src/c_F_1_8_e_s.c:func:35:56
16:Iowa/Iowa-Pointer-c_F_1_8_e/src/c_F_1_8_e.c:main:42:49
17:Iowa/Iowa-C99-c_K_4_5_c/src/../../shared/TEST_PARAM.H:ret:9:24
18:Iowa/Iowa-C99-c_K_4_5_c/src/c_K_4_5_c.c:func:50:80
19:Iowa/Iowa-C99-c_K_4_5_c/src/c_K_4_5_c.c:main:84:86

 55

BugList format

● FunctionID:BugType:Interproc:Exploitable:Security:Osl:Callsite:LineNo

0:buffer-overflow:0:0:0:0:0:85
2:memory-leak:0:0:0:0:0:43
3:buffer-overflow:0:0:0:0:0:79
4:use-after-free:0:0:0:0:0:31
6:buffer-overflow:0:0:0:0:0:42
12:free-of-unallocated:0:0:0:0:0:50
12:memory-leak:0:0:0:0:0:51
15:buffer-overflow:0:0:0:0:0:48
18:read-outside-array-
bounds:0:0:0:0:0:71
21:buffer-overflow:0:0:0:0:0:81
23:buffer-overflow:0:0:1:0:0:50
25:read-outside-array-
bounds:0:0:0:0:0:58
36:buffer-overflow:1:0:0:0:0:842
49:buffer-overflow:0:0:0:0:0:87
51:read-outside-array-
bounds:0:0:0:0:0:49
53:buffer-overflow:0:0:0:0:0:85
54:buffer-overflow:0:0:1:0:0:121
62:buffer-overflow:0:0:0:0:0:85
67:memory-leak:0:0:0:0:0:52
69:memory-leak:0:0:0:0:0:75

 56

FeatureFile format

● FunctionID:Features....

1:0:0:0:0:0:0:1:0:1:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:0
2:0:0:0:0:1:1:3:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:3:0:0:0:0:0:0:0:0:0
3:0:0:0:0:0:1:3:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:3:0:0:0:0:0:0:0:0:0
4:0:0:0:0:0:0:15:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:0:7:0:0:0:0:0:0:1:0:0:0:0:0:0:5:0:0:0:0:0:0:0:0:0
5:1:0:0:0:0:1:7:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:5:0:0:0:0:0:0:1:0:0:0:0:0:0:3:1:0:0:0:0:1:0:0:0
6:3:1:0:0:0:14:9:0:0:0:0:0:0:0:0:0:0:4:4:0:0:0:0:22:0:0:0:0:0:0:1:0:0:0:0:0:0:11:2:0:0:0:0:0:0:0:0
7:0:0:0:0:0:1:2:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:3:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
8:1:0:0:0:0:7:3:0:0:0:0:0:0:0:0:0:0:1:2:0:0:0:0:6:0:0:0:0:0:0:3:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
9:0:0:0:0:2:4:7:0:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:3:0:0:0:0:0:0:1:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
10:0:0:0:0:0:5:4:0:0:0:0:0:0:0:0:0:0:2:2:0:0:0:0:7:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
11:1:0:0:0:0:1:7:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:5:0:0:0:0:0:0:1:0:0:0:0:0:0:3:1:0:0:0:0:1:0:0:0
12:3:0:0:0:2:11:9:0:0:0:0:0:0:0:0:0:0:3:4:0:0:0:0:16:0:0:0:0:0:0:1:0:0:0:0:0:0:9:1:0:0:0:0:1:0:0:0
13:0:0:0:0:0:1:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:0
14:1:0:0:0:0:1:7:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:5:0:0:0:0:0:0:1:0:0:0:0:0:0:3:1:0:0:0:0:1:0:0:0
15:3:0:0:0:1:11:7:0:0:0:0:0:0:0:0:0:0:6:3:0:0:0:0:17:0:0:0:0:0:0:2:0:0:0:0:0:0:11:0:0:0:0:0:0:0:0:0
16:0:0:0:0:0:3:3:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:4:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
17:1:0:0:0:0:1:7:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:5:0:0:0:0:0:0:1:0:0:0:0:0:0:3:1:0:0:0:0:1:0:0:0
18:6:0:0:0:4:26:15:0:0:0:0:0:0:0:0:0:0:9:9:0:0:0:0:38:0:0:0:0:0:0:1:0:0:0:0:0:0:14:0:0:0:0:0:2:0:0:0
19:0:0:0:0:0:1:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:0

● The number and identity of the features in the file do not matter. Multiple feature files
can be combined together for input into the machine learning tools

 57

ResultsFile format

● FunctionID:BugType:LineNo

0:buffer-overflow:85
3:buffer-overflow:79
4:use-after-free:31
15:buffer-overflow:48
21:buffer-overflow:81
23:buffer-overflow:50
25:read-outside-array-bounds:58
42:null-pointer-deref:1305
42:null-pointer-deref:1335
49:buffer-overflow:87
51:read-outside-array-bounds:49
53:buffer-overflow:85
62:buffer-overflow:85
75:buffer-overflow:83
76:buffer-overflow:79
77:buffer-overflow:36
79:buffer-overflow:80
81:buffer-overflow:45
83:buffer-overflow:85
84:buffer-overflow:85

● Results files can be converted to feature files, with each bug type making up a
column in the feature file

 58

Future research

● Given the problems associated with working
with small amounts of training data, future
research will look into overcoming this:
– Semi-supervised learning

– Using one of the static analysis tools to generate
ground truth so that any source code can be used
for training data

 59

Future research

● Overcoming the limits associated with manual
mining for features:
– Convolutional neural networks

 60

Reading material

Data Mining: Practical Machine
Learning Tools and Techniques

Ian H. Witten

C4.5: Programs for Machine
Learning

J. Ross Quinlan

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

