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Classification

● Classification is the task of assigning classes to 
items based on the features that characterise 
those items

● One famous example in machine learning is the 
Iris data set, for classifying Iris plants according 
to the physical features of the individual 
specimens
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Iris plant data set

Sepal length (cm) Sepal width (cm) Petal length (cm) Petal width (cm) Class

5.1 3.5 1.4 0.2 Iris-setosa

4.9 3 1.4 0.2 Iris-setosa

4.7 3.2 1.3 0.2 Iris-setosa

4.6 3.1 1.5 0.2 Iris-setosa

7 3.2 4.7 1.4 Iris-versicolor

6.4 3.2 4.5 1.5 Iris-versicolor

6.9 3.1 4.9 1.5 Iris-versicolor

5.5 2.3 4 1.3 Iris-versicolor

6.3 3.3 6 2.5 Iris-virginica

5.8 2.7 5.1 1.9 Iris-virginica

7.1 3 5.9 2.1 Iris-virginica

6.3 2.9 5.6 1.8 Iris-virginica

(150 total instances, 50 belonging to each class)
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Iris plant data set
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Iris plant data set
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Possible classification rules

● If petal_width < 0.8
● Iris-setosa (100% certainty)

● If petal_width >= 0.8
● If petal_length < 4.95

● Iris-versicolor (94% certainty)
● If petal_length >= 4.95

● Iris-virginica (96% certainty)
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Iris data set with classification rules
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Pitfalls when designing classification 
rules

● Classification rules should not be fit too tightly 
around the training data

● The purpose of classification rules is to classify 
new instances where the class is not known 
and overfitting the classification rules can 
reduce the accuracy of classification in the long 
run
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Machine learning

● When there are few features and when the 
relationship between features and classes is 
simple, classification rules can often be created 
manually

● In more complex cases, machine learning can 
be used to infer classification rules from the 
training data
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Decision trees

● One of the simplest algorithms for learning 
classification rules

● Generates a human-readable classifier model 
in the form of a tree of if/else tests

● Recursive implementation:
– A rule is created by choosing a feature and a 

threshold that best partition the data set

– This creates two subsets, which are recursively 
partitioned in the same way
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Example decision tree construction

petal_width <= 0.6

petal_width > 0.6

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6: Iris-versicolor (50/100)
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Example decision tree construction

petal_width <= 0.6

petal_width > 0.6

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6: Iris-versicolor (50/100)

petal_width <= 1.7
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Example decision tree construction

petal_width <= 1.7

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
|   petalwidth <= 1.7: Iris-versicolor (49/54)
|   petalwidth > 1.7: Iris-virginica (45/46)

petal_width > 1.7
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Example decision tree construction

petal_width <= 1.7

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
|   petalwidth <= 1.7: Iris-versicolor (49/54)
|   petalwidth > 1.7: Iris-virginica (45/46)

petal_width > 1.7

petal_length <= 4.9
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Example decision tree construction

petal_length <= 4.9

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
|   petalwidth <= 1.7
|   |   petallength <= 4.9: Iris-versicolor (47/48)
|   |   petallength > 4.9: Iris-virginica (4/6)
|   petalwidth > 1.7: Iris-virginica (45/46)

petal_length > 4.9
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Example decision tree construction

petal_length <= 4.9

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
|   petalwidth <= 1.7
|   |   petallength <= 4.9: Iris-versicolor (47/48)
|   |   petallength > 4.9: Iris-virginica (4/6)
|   petalwidth > 1.7: Iris-virginica (45/46)

petal_length > 4.9

petal_width <= 1.5



  19

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Iris-setosa
Iris-versicolor
Iris-virginica

Petal length (cm)

P
e

ta
l w

id
th

 (
cm

)

Example decision tree construction

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
|   petalwidth <= 1.7
|   |   petallength <= 4.9: Iris-versicolor (47/48)
|   |   petallength > 4.9
|   |   |   petalwidth <= 1.5: Iris-virginica (3/3)
|   |   |   petalwidth > 1.5: Iris-versicolor (2/3)
|   petalwidth > 1.7: Iris-virginica (45/46)

petal_width <= 1.5

petal_width > 1.5
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Example decision tree construction

petalwidth <= 0.6: Iris-setosa (50/50)
petalwidth > 0.6
|   petalwidth <= 1.7
|   |   petallength <= 4.9: Iris-versicolor (47/48)
|   |   petallength > 4.9
|   |   |   petalwidth <= 1.5: Iris-virginica (3/3)
|   |   |   petalwidth > 1.5: Iris-versicolor (2/3)
|   petalwidth > 1.7: Iris-virginica (45/46)

147/150 instances
correctly classified



  21

Decision trees

● Providing each instance can be uniquely 
identified by its features, the recursive 
construction of the decision tree can be run 
until all the classes are perfectly separated

● However, most algorithms stop earlier when 
certain criteria are met to avoid overfitting

● The leaves of the tree carry both a prediction 
and a confidence score, but the confidence 
score is only useful when the tree cuts off early 
enough to avoid overfitting
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Evaluation

● Once you have created a classifier model, you 
want to know how well it will fare on future data

● Unfortunately, as you don't have this future data 
yet you can't use it to evaluate your classifier

● The classifier's accuracy on the training data is 
not a good indicator of how well the classifier 
will work on future data, as the model may 
overfit the training data

● Standard approach is to hold back some data 
for evaluation and not use it in training
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Cross-validation

● The quality of the classifier depends on the 
amount of data used to train it

● As a result, when the amount of training data 
available is small, holding parts of it back for 
testing can be undesirable

● One solution to this is n-fold cross-validation
● The training data is randomly divided into n 

groups and each group is independently tested 
using the remaining groups as training data
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● For 3-fold cross-validation, you take your 
training data...



  25

3-fold cross-validation
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● ...and divide it into three subsets.

● The subdivision is commonly stratified, 
meaning each subset has approximately equal 
numbers of each class
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3-fold cross-validation
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The subset pairs are combined to create training
data for the remaining subset
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3-fold cross-validation
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● Classification models are trained on each 
training set...
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3-fold cross-validation
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● ...and then applied on their respective test sets 
to produce an evaluation

● Every instance has now been classified, and 
the accuracy of the algorithm on this data set 
can be reasonably expected to apply to unseen 
data, providing the training set sufficiently 
represents the unseen data
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Machine learning for source code 
classification

● Primary data set used for training and testing is 
the 'begbunch' accuracy test suites, used for 
testing Parfait

● After some files were removed, either for data 
quality reasons or because they couldn't be 
compiled, the data set consists of 5434 
functions across 3627 C and C++ source files
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Machine learning for source code 
classification

● The data set consists of source files that have 
been marked up with tags identifying bugs and 
potential vulnerabilities:

int main(int argc, char *argv[])
{
  int inc_value;
  int loop_counter;
  char buf[10];

  inc_value = 4105 - (4105 - 1);

  for(loop_counter = 0; ; loop_counter += inc_value)
  {
    if (loop_counter > 4105) break;
/* <bug buffer-overflow> */    buf[loop_counter] = 'A'/* </bug> */;
  }

  return 0;
}
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Machine learning for source code 
classification

● The problem is treated as a classification task 
with each bug type considered to be an 
independent class variable

● Example bug types:
– buffer-overflow

– double-free

– memory-leak

– race-condition

– read-outside-array-bounds
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Machine learning for source code 
classification

● Classification is performed at the function level:
– A single source line is not likely to have enough 

information in it to meaningfully identify whether it 
has a bug or not

– An entire source file may be too coarse for 
classifications to be meaningful

● The class labels (bug types) are provided, but 
the features are not necessarily obvious
– Unlike problems where you have an existing data 

set, like the Iris plants set
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Features for classifying source code

● There are two main kinds of features that we 
hope to find:
– Features that indicate the presence of or absence 

of a particular kind of bug
● Risky programming styles that happen to correlate 

strongly with certain bugs or vulnerabilities

– Features that allow us to find duplicates or near-
duplicates of functions or blocks of code

● The logic here is that code gets copied around a lot and 
this can cause certain bugs or vulnerabilities to propagate
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Features for classifying source code

● Outputs from the Parfait “Complexity” tool:
● Cyclomatic
● Dataflow
● DefUseChains
● Edges
● Effort
● FuncEndLine
● FuncStartLine
● Knots
● Length
● Level
● LineCount
● Nesting
● Operators
● Vertices
● Vocabulary
● Volume
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Features for classifying source code

● Text features:
● !
● (
● )
● ,
● 00
● 1
● 10
● 101
● 1024
● 12
● 1900
● 2
● 20
● 25
● 320x200
● 4G
● 55
● 553
● 8000
● ==
● APLOG_ERR
● APMG_CLK_REG_VAL_BSM_CLK_RQT
● BAD
● CV_CHARPTR
● CV_FLOAT

● CV_INT
● Con_DrawRuler2
● Con_GetAlias
● Con_GetByte
● Con_GetCommand
● Con_GetFloat
● Con_GetVariable
● DDKEY_ENTER
● DEFAULT
● DEFAULT_LOG_FORMAT
● DHparams_dup
● DIAGstr
● EVP_PKEY_EC
● EXITCODE_OK
● Expired
● FILE
● FONT
● FSM_COMPATIBILITY
● FSM_IDADD
● FSM_IDDEL
● FSM_MACRO
● HITN
● HSP_TYPE_LOCAL
● IEEE80211_CHAN_ANYC
● ImageWidthsOrHeightsDiffer

● In
● Input
● Logged
● MagickEpsilon
● MagickExport
● Mel
● Only
● PATH_SEP
● PKCS7_TEXT
● PlayMusic
● REPLY_LEDS_CMD
● RESERVED
● RXON_FILTER_ACCEPT_GRP_MSK
● RX_QUEUE_SIZE
● Record
● Rectify
● SCD_DRAM_BASE_ADDR
● SCD_INTERRUPT_MASK
● SCD_QUEUE_RDPTR
● SDSSC_OKAY
● SGE_INTR_MAXBUCKETS
● SGE_PL_INTR_MASK
● SGE_RX_COPY_THRESHOLD
● SLC_IP
● SSL3_MT_CERTIFICATE_VERIFY

...etc...
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Features for classifying source code

● LLVM disassembly instruction frequencies:
● add
● alloca
● and
● ashr
● bitcast
● br
● call
● extractvalue
● fadd
● fcmp
● fdiv
● fmul
● fpext
● fptosi
● fptoui
● fptrunc
● fsub
● getelementptr
● icmp
● insertvalue
● inttoptr
● invoke
● landingpad
● load

● lshr
● mul
● or
● phi
● ptrtoint
● resume
● ret
● sdiv
● select
● sext
● shl
● sitofp
● srem
● store
● sub
● switch
● trunc
● udiv
● uitofp
● unreachable
● urem
● xor
● zext
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Features for classifying source code

● LLVM disassembly instruction n-grams:
define i32 @main(i32 %argc, i8** %argv) 
nounwind {
entry:
  %retval = alloca i32, align 4
  %argc.addr = alloca i32, align 4
  %argv.addr = alloca i8**, align 4
  %inc_value = alloca i32, align 4
  %loop_counter = alloca i32, align 4
  %buf = alloca [10 x i8], align 1
  store i32 0, i32* %retval
  store i32 %argc, i32* %argc.addr, align 4
  store i8** %argv, i8*** %argv.addr, align 4
  store i32 1, i32* %inc_value, align 4
  store i32 0, i32* %loop_counter, align 4
  br label %for.cond

for.cond:                                       
  ; preds = %for.inc, %entry
  %0 = load i32* %loop_counter, align 4
  %cmp = icmp sgt i32 %0, 4105
  br i1 %cmp, label %if.then, label %if.end

if.then:                                        
  ; preds = %for.cond
  br label %for.end
...

alloca-alloca
alloca-alloca
alloca-alloca
alloca-alloca
alloca-alloca
alloca-store
store-store
store-store
store-store
store-store
store-br

br-load

load-icmp
icmp-br

br-br

● add-add
● add-and
● add-br
● add-call
● add-getelementptr
● add-icmp
● add-invoke
● add-load
● add-lshr
● add-mul
● add-sdiv
● add-sext
● add-shl
● add-sitofp
● add-srem
● add-store
● add-sub
● add-switch
● add-trunc
● add-udiv
● add-urem
● add-zext
● alloca-alloca
● alloca-br
● alloca-call

...etc...
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Features for classifying source code

● Clang –analyze output
● Array-subscript-is-undefined
● Assigned-value-is-garbage-or-undefined
● Bad-free
● Branch-condition-evaluates-to-a-garbage-value
● Dead-assignment
● Dead-increment
● Dead-initialization
● Dereference-of-null-pointer
● Dereference-of-undefined-pointer-value
● Double-free
● Function-call-argument-is-an-uninitialized-value
● Garbage-return-value
● Memory-leak
● Out-of-bound-array-access
● Potential-buffer-overflow-in-call-to-&apos;gets&apos;
● Result-of-operation-is-garbage-or-undefined
● Return-value-is-not-checked-in-call-to-&apos;seteuid&apos;
● Undefined-allocation-of-0-bytes-(CERT-MEM04-C;-CWE-131)
● Use-after-free
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Features for classifying source code

● Output from other static analysis engines:
– Parfait

– Splint

– Uno
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Feature selection

● When there are a very large number of 
features, machine learning algorithms can take 
a long time to generate models and can 
perform suboptimally

● This can be solved through manual feature 
engineerin, but it is also possible to use 
machine learning to reduce the subset of 
features
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Feature selection

● For example, after mining the data set for text 
features, 8190 unique text features were 
identified

● This was reduced to a more manageable 500 
through dimensionality reduction using the 
leave-one-out-nearest-neighbour-error 
(LOONNE) algorithm
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LOONNE

● Leave-one-out-nearest-neighbour-error 
calculates a global error value for a particular 
data set by finding each instance's nearest 
neighbour in a Euclidean space formed out of 
the data set's features

● The differences between the class of each point 
and its nearest neighbour are then summed to 
produce this global error
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LOONNE

● Each dimension is then experimentally 
removed and the global error of each new 
subspace is calculated

● Finally, the subspace with the lowest global 
error becomes the new feature space

● This process then repeats until all features 
have been removed

● The result is a ranked list of features in order of 
representational capacity
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LOONNE

● This approach involves backward subspace 
selection rather than forward subspace 
selection to preserve groups of features that 
have greater combined representational 
capacity than they have individually

● Forward subspace selection would incorrectly 
omit these groups
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LOONNE
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Artificial data vs real data

● Some benchmarks were comprised of real 
data, others of artificial data designed to test for 
specific bugs:
– Cigital (artificial) 50 functions
– Iowa (artificial) 1686 functions
– Parfait (real) 547 functions
– Parfait-2 (real) 417 functions
– Parfait-examples (artificial) 25 functions
– Samate (artificial) 2366 functions
– unportable (real) 162 functions
– Memory-leak (artificial) 181 functions
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Artificial data vs real data

● While classification with the features identified 
was found to be very effective on the artificial 
data, in many cases it achieved this 
effectiveness by selecting for features that only 
correlated with bugs in the same artificial data

● However, artificial data could not be excluded 
entirely as the majority of the available data 
was artificial and many categories of bugs were 
only represented well in the artificial data sets
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Artificial data vs real data

● The compromise used here was to perform 
cross-validation on the individual bug-testing 
suites:
– e.g. when testing on the 'Cigital' suite, the data from 

the other suites would be used for training

● This ensured that maximum utility was 
extracted from the data without using the 
artificial data to “cheat”.

● The 'memory-leak' suite was removed as it was 
found to contain source files also used in other 
testing suites
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Comparisons

● Bug types no systems scored any correct 
results on were omitted (they are included in 
the total, however)

● FP = false positives

                         Biscotti            Parfait               Splint

buffer-overflow         1054/1305 (81%), 20 FP    1073/1305 (82%), 21 FP       821/1305 (63%), 356 FP
double-free                    0/23 (0%), 0 FP         16/23 (70%), 3 FP              0/23 (0%), 0 FP
format-string                  0/17 (0%), 0 FP           0/17 (0%), 0 FP            4/17 (24%), 17 FP
integer-overflow               0/24 (0%), 0 FP           1/24 (4%), 9 FP              0/24 (0%), 0 FP
memory-leak                 29/189 (15%), 3 FP       54/189 (29%), 24 FP             0/189 (0%), 0 FP
null-pointer-deref             0/14 (0%), 0 FP          8/14 (57%), 3 FP            5/14 (36%), 69 FP
read-outside-array-bounds  176/267 (66%), 5 FP       179/267 (67%), 4 FP        232/267 (87%), 890 FP
uninitialised-var           37/125 (30%), 5 FP       81/125 (65%), 83 FP         79/125 (63%), 134 FP
use-after-free                 0/31 (0%), 0 FP         17/31 (55%), 3 FP            18/31 (58%), 7 FP
-----------------------------------------------------------------------------------------------------
total                   1296/2233 (58%), 37 FP    1429/2233 (64%), 150 FP    1159/2233 (52%), 1473 FP
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Biscotti

● Performance can be tuned to achieve greater 
accuracy with more false positives or fewer 
false positives at the cost of lower accuracy

● Presented results balance accuracy and false 
positives by maximising the score:
– score = correct results – false positives

● Can be used as a 'filter' for more expensive 
static analysis, like Parfait, by omitting Parfait 
and other time-consuming features, then tuning 
the results to maximise accuracy
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Top 10 features

● [Parfait]buffer-overflow

● [Parfait]read-outside-array-bounds

● [Splint]xx-fresh-storage-not-released-before-return

● [Text],

● [Complexity]FuncEndLine

● [Parfait]uninitialised-var

● [Splint]xx-function-exported-but-not-used-outside

● [Splint]xx-for-body-not-block

● [Splint]xx-return-value-ignored

● [Text]contents
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Algorithms used by Biscotti

● LOONNE
– Used to reduce the dimensionality of the feature 

space before passing the results to the next 
algorithm

● RandomForests
– Ensemble classifier consisting of 100 randomly-

seeded decision trees using different random 
subsets of the feature set

– The outcomes of the decision trees are then 
combined to produce a single outcome for each 
result
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Biscotti architecture

● Developed as a series of individual programs 
and scripts that interact through shared file 
formats

● Can be used standalone or in conjunction with 
Weka and other machine learning tools, with 
supplied conversion tools to arff and C5 formats
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FunctionList format

● FunctionID:SourceFile:FunctionName:FirstLine:LastLine
0:Samate/Krat-basic-00227-large/src/basic-00227-large.c:main:74:90
1:Samate/Samate-memory_leak_basic1/src/memory_leak_basic.cpp:_Z4funcv:34:35
2:Samate/Samate-memory_leak_basic1/src/memory_leak_basic.cpp:main:39:44
3:Samate/Krat-basic-00017-med/src/basic-00017-med.c:main:74:83
4:Samate/Samate-Using_freed_memory/src/Using_freed_memory.c:main:21:35
5:Iowa/Iowa-C99-c_K_3_2_b/src/../../shared/TEST_PARAM.H:ret:9:24
6:Iowa/Iowa-C99-c_K_3_2_b/src/c_K_3_2_b_s.c:func:34:46
7:Iowa/Iowa-C99-c_K_3_2_b/src/c_K_3_2_b.c:main:45:51
8:Samate/Samate-resource_injection_basic_good/src/resource_injection_basic_good.c:allowed:41:49
9:Samate/Samate-
resource_injection_basic_good/src/resource_injection_basic_good.c:printLine:52:64
10:Samate/Samate-resource_injection_basic_good/src/resource_injection_basic_good.c:main:66:74
11:Memory-leak/Iowa/Iowa-Alloc-c_G_1_3_a/src/../../shared/TEST_PARAM.H:ret:9:24
12:Memory-leak/Iowa/Iowa-Alloc-c_G_1_3_a/src/c_G_1_3_a_s.c:func:34:51
13:Memory-leak/Iowa/Iowa-Alloc-c_G_1_3_a/src/c_G_1_3_a.c:main:35:38
14:Iowa/Iowa-Pointer-c_F_1_8_e/src/../../shared/TEST_PARAM.H:ret:9:24
15:Iowa/Iowa-Pointer-c_F_1_8_e/src/c_F_1_8_e_s.c:func:35:56
16:Iowa/Iowa-Pointer-c_F_1_8_e/src/c_F_1_8_e.c:main:42:49
17:Iowa/Iowa-C99-c_K_4_5_c/src/../../shared/TEST_PARAM.H:ret:9:24
18:Iowa/Iowa-C99-c_K_4_5_c/src/c_K_4_5_c.c:func:50:80
19:Iowa/Iowa-C99-c_K_4_5_c/src/c_K_4_5_c.c:main:84:86
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BugList format

● FunctionID:BugType:Interproc:Exploitable:Security:Osl:Callsite:LineNo

0:buffer-overflow:0:0:0:0:0:85
2:memory-leak:0:0:0:0:0:43
3:buffer-overflow:0:0:0:0:0:79
4:use-after-free:0:0:0:0:0:31
6:buffer-overflow:0:0:0:0:0:42
12:free-of-unallocated:0:0:0:0:0:50
12:memory-leak:0:0:0:0:0:51
15:buffer-overflow:0:0:0:0:0:48
18:read-outside-array-
bounds:0:0:0:0:0:71
21:buffer-overflow:0:0:0:0:0:81
23:buffer-overflow:0:0:1:0:0:50
25:read-outside-array-
bounds:0:0:0:0:0:58
36:buffer-overflow:1:0:0:0:0:842
49:buffer-overflow:0:0:0:0:0:87
51:read-outside-array-
bounds:0:0:0:0:0:49
53:buffer-overflow:0:0:0:0:0:85
54:buffer-overflow:0:0:1:0:0:121
62:buffer-overflow:0:0:0:0:0:85
67:memory-leak:0:0:0:0:0:52
69:memory-leak:0:0:0:0:0:75
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FeatureFile format

● FunctionID:Features....

1:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:0
2:0:0:0:0:1:1:3:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:3:0:0:0:0:0:0:0:0:0
3:0:0:0:0:0:1:3:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:3:0:0:0:0:0:0:0:0:0
4:0:0:0:0:0:0:15:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:0:7:0:0:0:0:0:0:1:0:0:0:0:0:0:5:0:0:0:0:0:0:0:0:0
5:1:0:0:0:0:1:7:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:5:0:0:0:0:0:0:1:0:0:0:0:0:0:3:1:0:0:0:0:1:0:0:0
6:3:1:0:0:0:14:9:0:0:0:0:0:0:0:0:0:0:4:4:0:0:0:0:22:0:0:0:0:0:0:1:0:0:0:0:0:0:11:2:0:0:0:0:0:0:0:0
7:0:0:0:0:0:1:2:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:3:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
8:1:0:0:0:0:7:3:0:0:0:0:0:0:0:0:0:0:1:2:0:0:0:0:6:0:0:0:0:0:0:3:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
9:0:0:0:0:2:4:7:0:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:3:0:0:0:0:0:0:1:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
10:0:0:0:0:0:5:4:0:0:0:0:0:0:0:0:0:0:2:2:0:0:0:0:7:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
11:1:0:0:0:0:1:7:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:5:0:0:0:0:0:0:1:0:0:0:0:0:0:3:1:0:0:0:0:1:0:0:0
12:3:0:0:0:2:11:9:0:0:0:0:0:0:0:0:0:0:3:4:0:0:0:0:16:0:0:0:0:0:0:1:0:0:0:0:0:0:9:1:0:0:0:0:1:0:0:0
13:0:0:0:0:0:1:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:0
14:1:0:0:0:0:1:7:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:5:0:0:0:0:0:0:1:0:0:0:0:0:0:3:1:0:0:0:0:1:0:0:0
15:3:0:0:0:1:11:7:0:0:0:0:0:0:0:0:0:0:6:3:0:0:0:0:17:0:0:0:0:0:0:2:0:0:0:0:0:0:11:0:0:0:0:0:0:0:0:0
16:0:0:0:0:0:3:3:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:4:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:0:0:0
17:1:0:0:0:0:1:7:0:0:0:0:0:0:0:0:0:0:0:1:0:0:0:0:5:0:0:0:0:0:0:1:0:0:0:0:0:0:3:1:0:0:0:0:1:0:0:0
18:6:0:0:0:4:26:15:0:0:0:0:0:0:0:0:0:0:9:9:0:0:0:0:38:0:0:0:0:0:0:1:0:0:0:0:0:0:14:0:0:0:0:0:2:0:0:0
19:0:0:0:0:0:1:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:2:0:0:0:0:0:0:2:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:0

● The number and identity of the features in the file do not matter. Multiple feature files 
can be combined together for input into the machine learning tools
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ResultsFile format

● FunctionID:BugType:LineNo

0:buffer-overflow:85
3:buffer-overflow:79
4:use-after-free:31
15:buffer-overflow:48
21:buffer-overflow:81
23:buffer-overflow:50
25:read-outside-array-bounds:58
42:null-pointer-deref:1305
42:null-pointer-deref:1335
49:buffer-overflow:87
51:read-outside-array-bounds:49
53:buffer-overflow:85
62:buffer-overflow:85
75:buffer-overflow:83
76:buffer-overflow:79
77:buffer-overflow:36
79:buffer-overflow:80
81:buffer-overflow:45
83:buffer-overflow:85
84:buffer-overflow:85

● Results files can be converted to feature files, with each bug type making up a 
column in the feature file
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Future research

● Given the problems associated with working 
with small amounts of training data, future 
research will look into overcoming this:
– Semi-supervised learning

– Using one of the static analysis tools to generate 
ground truth so that any source code can be used 
for training data
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Future research

● Overcoming the limits associated with manual 
mining for features:
– Convolutional neural networks
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Reading material

Data Mining: Practical Machine 
Learning Tools and Techniques

Ian H. Witten

C4.5: Programs for Machine 
Learning

J. Ross Quinlan
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