
Motivation

The original goal of this research was investigate the effectiveness of document signature
approaches for source code classification tasks. The idea was that, if an effective low-
dimensionality representation of source code could be found that preserves all the necessary
information, it could be used to assist in classification tasks when paired with a sufficiently large
corpus of marked-up source code. This representation can then be translated into signature space,
within which high performance retrieval and clustering approaches can be utilised for the purpose
of creating a highly scalable source code classification service.

As applying signature techniques to classification tasks is a simple matter, the research portion of
this task consists of determining the ideal representation of source code.

Data sets

The extent to which meaningful classification of source code can be achieved is limited by the
training data we have available. In terms of the resources that were available to this project, the
following three internal Oracle data sets were used:

Begbunch Accuracy

Begbunch is a collections of test data sets used internally at Oracle for benchmarking Oracle’s
Parfait static analysis tool. Begbunch is divided into two main sub-collections, of which one is the
accuracy collection. As the name suggests, the accuracy collection is used for benchmarking the
accuracy of Parfait. It consists of several suites of test programs which have had their source code
marked up to indicate the location and nature of various bugs (such as buffer overflows, memory
leaks and use of uninitialised data).

Figure 1: Example of marked-up source code

int main(int argc, char *argv[])
{
 int inc_value;
 int loop_counter;
 char buf[10];

 inc_value = 4105 - (4105 - 1);

 for(loop_counter = 0; ; loop_counter += inc_value)
 {
 if (loop_counter > 4105) break;
/* <bug buffer-overflow> */ buf[loop_counter] = 'A'/* </bug> */;
 }

 return 0;
}

Of the available data sets, this is the one that is most useful to this particular research problem, due
to the high quality of the curated bug definitions. After some redundant or unnecessary suites were
removed from the data set, the following test suites remained:

Test suite Suite type # of functions

Cigital artificial 50

Iowa artificial 1686

Parfait real 547

Parfait-2 real 417

Parfait-examples artificial 25

Samate artificial 2366

unportable real 162

Memory-leak artificial 181

These suites can be further classified into two subtypes – artificial and real:

• The artificial examples consist of code that was created specifically to feature a particular
bug. For example, a function that creates an array of a certain size and then sets an element
outside the bounds of that array to test the analysis tool’s ability to detect a buffer overrun.

• The real examples consist of code, usually from open-source projects, that happens to
contain a particular bug. In many cases the surrounding code may be stripped away so that
all that remains is the bugged function and a test harness to call it, but the code exhibiting
the bug can be assumed to be real-world code.

Approximately 20% of the functions in the Begbunch Accuracy data set are real, while the
remaining functions are artificial. For the purposes of our research the real data is the most helpful,
as it identifies what real functions that exhibit particular vulnerabilities look like.

Begbunch Scalability

The other side to the Begbunch collection is the scalability set of test suites. These consist of a set
of independently compilable software projects that are intended to test the execution time of Parfait;
as a result, while the code may or may not contain bugs, there is no mark-up within the source files
in this data set to indicate the presence of bugs. The size of the data set is considerable, with a total
of 64,662 functions making up this data set; however, for it to be used as training or test data for
any classifier, it needs to be marked up using some other approach (such as a static analysis tool like
Parfait) first.

OpenSolaris

The largest of the data sets, the OpenSolaris collection is a copy of the source code from an
OpenSolaris release from 2008. While the code has not been marked up like the Begbunch
Accuracy data set has been, there is a certain amount of independently verified ground truth
available for this set. This ground truth is in the form of 10,101 bugs that have been reported by a
run of an old version of Parfait and manually evaluated for false positives, with bugs marked as

“verified”, “unverified”, “false” or “wontfix”. Two limitations prevent this data set from being quite
as useful as the Begbunch accuracy data set:

• As the metadata consists of verified Parfait bugs only, bugs that were not caught by Parfait
(false negatives) are not included.

• The metadata only lists bugs, not the files and functions that Parfait was run on. Hence it is
impossible to tell if a particular file is unrepresented in the data because Parfait did not
detect any bugs in it, or because the file was never processed by Parfait.

In addition to these limitations, due to the age of this particular OpenSolaris release and the
complexities associated with setting up a complete build environment for it, many of the source
files were not able to be recompiled for testing against updated static analysis tools. It is likely that
many of the files unrepresented in the metadata were unable to be compiled at the time; however,
the overlap between the functions that could be successfully recompiled and the files represented in
the metadata is a lot smaller than is ideal. In total, there appear to be approximately 648,007
functions in the OpenSolaris data set; this was determined through source-only analysis (examining
the source text for indicators that a function is present without need for preprocessing)

Feature Extraction
In order to perform rudimentary machine learning on the available source code and determine what
information any signature representation will need to incorporate, it is necessary to establish a set of
features that can be extracted that contain the information needed. Owing to the problems
associated with determining the value of a feature without testing it, the initial approach taken in
this instance was to extract a number of different features and progressively trim that list down until
it reached a reasonable size.

Op-code n-grams

For code to be analysed with Parfait it first needs to be translated into LLVM’s intermediary bitcode
format, which is an IL that can also be represented as an assembly language. This format also
presents us with some useful cross-platform features that allow some of the control flow of a
function to be captured without the syntax. In this case we make use of n-grams of the instruction
op-codes (e.g. load, store, br), where 1-grams simply function as a histogram of how many times
each instruction was used in a particular function, while 2-grams count how many times a particular
sequence of two op-codes appear consecutively. While the amount of individual detail these
features can give is low, the idea is that it may be possible that certain instructions or pairs of
instructions present an elevated risk profile with respect to certain types of bugs; alternatively, the
absence of certain instructions or pairs of instructions may make it impossible for certain types of
bugs to exist in the code.

Code complexity features

The complexity tool was developed by Oracle alongside Parfait and its function is quite simple; on
input of an LLVM bitcode file, it outputs a set of complexity metrics for each function in that file.
These metrics relate to how complex the control flow of the code is, among other factors. The

rationale being using these features is the fact that they are relatively inexpensive to compute and, if
common-sense associations between code complexity and code bugginess apply, these could be
useful metrics for highlighting risky pieces of code.

Cyclomatic

Dataflow

DefUseChains

Edges

Effort

FuncEndLine

FuncStartLine

Knots

Length

Level

LineCount

Nesting

Operators

Vertices

Vocabulary

Volume

Text features

These features consist of tokens taken directly from the text of the source code from each function.
This is performed with a custom tokenisation approach that attempts to preserve C language tokens
(for example, keeping != and >> together) and the output acts as a histogram of each identifier and
syntactical atom that appears in a given function. The rationale behind incorporating these features
into the model is that there may be useful properties that only the original text can detect; for
instance, when a buggy portion of code is duplicated.

This is an example of some of the text features extracted from the Begbunch accuracy data set:

!
(
)
,
00
1
10
101
1024
12
1900
2
20
25
320x200
4G
55

CV_INT
Con_DrawRuler2
Con_GetAlias
Con_GetByte
Con_GetCommand
Con_GetFloat
Con_GetVariable
DDKEY_ENTER
DEFAULT
DEFAULT_LOG_FORMAT
DHparams_dup
DIAGstr
EVP_PKEY_EC
EXITCODE_OK
Expired
FILE
FONT

In
Input
Logged
MagickEpsilon
MagickExport
Mel
Only
PATH_SEP
PKCS7_TEXT
PlayMusic
REPLY_LEDS_CMD
RESERVED
RXON_FILTER_ACCEPT_GRP_MS
K
RX_QUEUE_SIZE
Record
Rectify

553
8000
==
APLOG_ERR
APMG_CLK_REG_VAL_BSM_CLK
_RQT
BAD
CV_CHARPTR
CV_FLOAT

FSM_COMPATIBILITY
FSM_IDADD
FSM_IDDEL
FSM_MACRO
HITN
HSP_TYPE_LOCAL
IEEE80211_CHAN_ANYC
ImageWidthsOrHeightsDiffer

SCD_DRAM_BASE_ADDR
SCD_INTERRUPT_MASK
SCD_QUEUE_RDPTR
SDSSC_OKAY
SGE_INTR_MAXBUCKETS
SGE_PL_INTR_MASK
SGE_RX_COPY_THRESHOLD
SLC_IP
SSL3_MT_CERTIFICATE_VERIFY
...etc…

Output from static analysis tools

Although these features clearly fail the test of being time-efficient to compute, it also made sense to
use the results from running various static analysis tools (including Parfait) on the source code to
generate features for that code. As well as providing data to benchmark this work against, it also
opens the possibility of potentially combining multiple static analysis tools to produce better results
than if only a single tool were used.

Static analysis tools used to provide additional features include:

• Parfait

• Splint

• Clang –analyze

• Uno

Dimensionality reduction
As the full set of features discussed in the previous section is considerable, it makes sense to
develop some initial method of ranking them in terms of their representational capacity as far as
their effectiveness at successfully classifying source code is concerned. This way the low-value
features can be excluded without much additional work. To this end, the Leave One Out Nearest
Neighbour Error (LOONNE) method is employed; the nearest neighbour error is calculated as the
number of errors that exist when each function is classified as possessing the same bug as the
nearest function in terms of Euclidean distance in the current feature space. For each feature in the
current feature set, the nearest neighbour error is calculated for the feature set with that feature
omitted. Through this process the feature that when removed results in the lowest nearest neighbour
error for the remaining feature space can be determined. That feature is then permanently excluded
and the process repeated until all features have been removed. The result is a ranked list of features
in terms of their value, with the first-removed features being the least valuable.

Most useful features

The output from the LOONNE tool is a ranked list of features. From this list we can have a look at
the features that were found most useful for classifying functions in this data set:

Feature type Feature name Rank

Parfait buffer-overflow 1

Text _csl_to_argv 2

Splint Undocumented global use 3

Splint For body not block 4

Splint buffer-overflow 5

Splint If body not block 6

Splint Path with no return in function with return type 7

Splint Return value ignored 8

Parfait Uninitialised var 9

Splint Function exported but not used outside 10

Splint Operands of comparison have incompatible types 11

LLVM 2-gram load, fpext 12

Complexity FuncStartLine 13

Splint Test expression for if not boolean 14

Splint Fresh storage not released before return 15

Complexity Nesting 16

Text ! 17

LLVM 2-gram add, call 18

Figure 2: Progressively removing the least valuable feature at each iteration results in the
global error shrinking, then increasing again once important features start disappearing

010002000300040005000600070008000
0

500

1000

1500

2000

2500

3000

Dimensionality

E
rr
o
r

The utility of some of these features is obvious; Parfait and Splint both report suspected buffer
overflow bugs and there is clearly a strong correlation between this reporting and the presence of
buffer overflow bugs in the code. Splint's “Fresh store not released before return” is also clearly
indicative of a certain type of memory leak and a strong association with memory leaks can
therefore be expected. For other features the association is far less clear.

Visualisation of feature subsets

To assist in understanding how the feature subsets are linked to the bug definitions, a visualisation
tool was prepared that uses principal component analysis (PCA) to project vectors (functions in a
given feature space) into a 2D space with pairwise distances preserved as much as possible. The
PCA can also be used on 1D vectors (in the case where only one feature is being investigated) – this
simply causes the points to be distributed along the diagonal.

As an example, Figure 3 depicts the relationship between Parfait's buffer-overflow feature and the
buffer overflow bug. Each function in the data set is a point and a large amount of jitter has been
added to the points so that the distribution of buggy and non-buggy functions in each group is clear
(otherwise only two points would be visible, as there are only two possible values for the buffer-
overflow feature.

As another example, Figure 4 shows Splint's buffer-overflow feature. We can see from the
comparison that Parfait's buffer overflow reporting is a good deal more useful than Splint's – both
the red and black groups are considerably purer in Parfait's feature visualisation than Splint's. To

Figure 3: PCA of Parfait's buffer-overflow
feature

Figure 4: PCA of Splint's buffer-overflow
feature

better illustrate the connection between the two, both Splint's and Parfait's buffer-overflow features
can be examined at once.

As Figure 5 shows, this divides the functions into four categories. The most intriguing part of this
image is the fact that the purest group is not the one in which Parfait and Splint both agree that a
buffer overflow is present (the bottom right group), but instead the one in which Parfait claims a
buffer overflow and Splint doesn't (the top right group). The functions that Splint finds a buffer
overflow in and Parfait does not (the bottom left group) are the tricky ones – while less than half of
the functions in this group actually have a buffer overflow, this group still contains many buffer
overflow functions that were missed entirely by Parfait. This example shows how incorporating
multiple features increases the confidence with which predictions can be made – not only can more
accurate predictions be made as a result, but situations the algorithm is less confident about (such as
when Splint reports a buffer overflow but Parfait does not) can be identified.

When the output from a third system – the static analysis tool Uno – is added,, even more
comprehensive predictions can be made (Figure 6). In this visualisation the groups in the bottom
row are the one Parfait reports a buffer overflow for and the top groups are the ones Parfait does not
report a buffer overflow for. Within those rows, the leftmost group is not reported by either Splint
nor Uno, while the rightmost group is reported by both. The second from the left is reported by Uno
but not Splint and the second from the right is reported by Splint but not Uno. One thing that
immediately stands out is that when Uno and Parfait both agree that a buffer overflow is present,
there is a buffer overflow present 100% of the time, which is a very useful thing to know. While
Parfait is still the best performing individual system, by combining these systems we can get both

Figure 5: PCA of Parfait's and Splint's buffer-
overflow features

Figure 6: PCA of Parfait's, Splint's and Uno's
buffer-overflow features

answers and a level of confidence about how likely that answer is to be correct, given what we
know from the data.

When multiple features cover different bug types, groupings around different bug types (or even
different combinations of bug types, in instances where multiple bugs appear in the same functions)
begin to emerge. Figures 7 through 10 show the result of using a PCA on all 14 features reported by
Parfait (buffer-overflow, call-mismatch-extra-args, call-mismatch-types, deprecated-function,
double-free, file-desc-leak, file-ptr-leak, file-ptr-not-init, integer-overflow, memory-leak, null-
pointer-deref, read-outside-array-bounds, uninitialised-var, use-after-free). Unsurprisingly, the
strongest correlation present is between each bug and the Parfait feature that results from detecting
for that particular bug (uninitialised variables are most strongly associated with the uninitialised-
var report from Parfait, for example).

Figure 7: Parfait PCA (Buffer overflow) Figure 8: Parfait PCA (Memory leak)

Figure 9: Parfait PCA (Read outside array
bounds)

Figure 10: Parfait POCA (Uninitialised
variable)

Artificial data and real data

As more and more features are added, patterns emerge and groups form that allow many different
bug types to be identified (along with how confident the system is about their predictions) at a high
rate of accuracy. Figure 11 shows the results of a PCA on the best-performing features identified by
the LOONNE algorithm. Many of these small groups have very high purity and as expected these
features allow a large number of buffer overflow errors to be accurately identified. Functions with
different bug types also form into small groups. However, the level of purity can be misleading and
the machine learning system can be tricked into believing that certain features are more useful than
they actually are due to quirks in the data sets used.

As an example, there is a small cluster of points in Figure 11 - functions that contain buffer
overflow and memory leaks that are not recognised by Parfait. A closer look at these points reveals
that the functions – two from the Iowa dataset and one from the Memory-leak dataset – have very
close or identical values for several features, including FuncStartLine, FuncEndLine, a number of
identical reports from Splint and the 'store, store' LLVM instruction 2-gram. As it turns out, these
different functions are actually practically identical implementations of a main function that
allocates a block of memory and loops over it, going past the end of the allocated memory, then
returns without freeing that memory. Hence the features that enabled this function to be identified
were helped most by the fact that the function was almost identical. (to be continued...)

Machine learning
With the reduced set of features generated through the LOONNE approach, machine learning can
be performed

TODO: Include results showing effectiveness with different sets of features and with different
pairings of training / evaluation data

TODO: Discuss the architecture of these tools + how they work together (possibly)

TODO: Discuss preliminary investigations into CNN, RNN, LSTM work.

TODO: Discuss plans for going forward – how to resolve issues with available data, shortcomings
we’ve identified with performing machine learning on source code in general

Figure 11: PCA of top-performing features
(Buffer overflows highlighted)

	Motivation
	Data sets
	Begbunch Accuracy
	Begbunch Scalability
	OpenSolaris

	Feature Extraction
	Op-code n-grams
	Code complexity features
	Text features
	Output from static analysis tools

	Dimensionality reduction
	Most useful features
	Visualisation of feature subsets

	Artificial data and real data
	Machine learning

